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Scaling Dynamics of a Massive Piston in a Cube Filled
with Ideal Gas: Exact Results
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We continue the study of the time evolution of a system consisting of a piston in
a cubical container of large size L filled with an ideal gas. The piston has mass
M ~ L? and undergoes elastic collisions with N ~ L* gas particles of mass m. In
a previous paper, Lebowitz et al.!") considered a scaling regime, with time and
space scaled by L, in which they argued heuristically that the motion of the
piston and the one particle distribution of the gas satisfy autonomous coupled
differential equations. Here we state exact results and sketch proofs for this
behavior.
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1. THE MODEL AND MAIN RESULTS

This paper is a continuation of ref. 1, where deterministic scaled equations
describing the dynamics of a massive piston in a cubical container filled
with ideal gas were given. Here we state exact conditions on the validity of
those equations and outline the arguments. Full proofs will be published in
a separate paper.®

We refer the reader to refs. 1 and 2 as well as refs. 3-7 for a detailed
description of the problem of a massive piston moving in a cylinder. Here
we just recall necessary facts.

Consider a cubical domain 4, of size L separated into two parts by a
wall (piston), which can move freely without friction inside 4;. Each part
of A4, is filled by a noninteracting gas of particles, each of mass m. The
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piston has mass M = M; and moves along the x-axis under the action of
elastic collisions with the particles. The size L of the cube is a large param-
eter of the model, and we are interested in the limit behavior as L — oo.
The mass m of gas particles is fixed. We will assume that M grows propor-
tionally to L? and the number of gas particles N is proportional to L3,
while their velocities remain of order one.

The position of the piston at time ¢ is specified by a single coordinate
X =X, (1), 0 < X < L, its velocity is then given by ¥ =V, (f) = X,(¢). Since
the components of the particle velocities perpendicular to the x-axis play
no role in the dynamics, we may assume that each particle has only one
coordinate, x, and one component of velocity, v, directed along the x-axis.

When a particle with velocity v hits the piston with velocity V', their
velocities after the collision, »" and V', respectively, are given by

V'=(1—-¢)V+ev (1.1
vV=—(1-8)v+Q2—-¢)V (1.2)

where & = 2m/(M +m). We assume that M +m =2mL?/a, where a>0is a
constant, so that

e 2m _a
T M+m  L?

(1.3)

When a particle collides with a wall at x=0 or x= L, its velocity just
changes sign.

The evolution of the system is completely deterministic, but one needs
to specify initial conditions. We shall assume that the piston starts at the
midpoint X;(0) = L/2 with zero velocity ¥;(0) = 0. The initial configura-
tion of gas particles is chosen at random as a realization of a (two-dimen-
sional) Poisson process on the (x, v)-plane (restricted to 0 < x < L) with
density L’p,(x, v), where p;(x,v) is a function satisfying certain condi-
tions, see below, and the factor of L? is the cross-sectional area of the con-
tainer. In other words, for any domain D < [0, L] x R the number of gas
particles (x, v) € D at time ¢ =0 has a Poisson distribution with parameter
Ap =L [, pr(x, v) dx dv.

Let 2, denote the space of all possible configurations of gas particles
in A;. For each realization w € 2, the piston trajectory will be denoted by
X, (¢, w) and its velocity by V; (¢, w).

As L — oo, space and time are rescaled as

y=x/L and t=t/L. (1.4
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which is a typical rescaling for the hydrodynamic limit transition (see
refs. 1 and 2 for motivation and physical discussion). We call y and 7 the
macroscopic (“‘slow”) variable, as opposed to the original microscopic
(“fast™) x and z. Now let

Y. (t,w) =X (7L, w)/L, W, (1, ) =V, (tL, ®) (1.5)

be the position and velocity of the piston in the macroscopic variables. The
initial density p, (x, v) satisfies

pL(x9 U) = no(x/La U)

where the function 7,( y, v) is independent of L. Without loss of generality,
assume that 7, is normalized so that

J‘01 j:O o (y,v)dvdy =1

Then the mean number of particles in the entire container A; is equal
exactly to

E=[" " Lpv o) dvax=1°

In order to describe the dynamics by differential equations, we assume
that the function 7z,(y, v) satisfies several technical requirements stated
below.

(P1) Smoothness. m,(y,v)is a piecewise C' function with uniformly
bounded partial derivatives, i.e., |0n,/0y| < D, and |0r,/0v| < D, for some
D, >0.

(P2) Discontinuity lines. my,(y,v) may be discontinuous on the line
y=Y.(0) (i.e., “on the piston”). In addition, it may have a finite number
(< K,) of other discontinuity lines in the ( y, v)-plane with strictly positive
slopes (each line is given by an equation v= f(y) where f(y) is C! and
0<c <f'(y)<c, <)

(P3) Density bounds. Let

7o (y, 0) > Ty >0 for v, <|v|<v, (1.6)
for some 0 < v, < v, <00, and

sup nO(ya U) = Tlmax < (17)
Y50
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The requirements (1.6) and (1.7) basically mean that 7,(y, v) takes values
of order one.

(P4) Velocity “cutoff.” Let
nO(ya U) = 0’ lf |U| < Vmin or |U| > Umax (18)

with some 0 < v,,;, < v,,, < o0. This means that the speed of gas particles is
bounded from above by v,,, and from below by v,;,.

(P5) Approximate pressure balance. m,(y,v) must be nearly sym-
metric about the piston, i.e.,

[0 (¥, ) — (1 =y, —v)| <& 1.9)
for all 0 < y < 1 and some sufficiently small ¢, > 0.

The requirements (P4) and (P5) are made to ensure that the piston
velocity |V, (¢, w)| will be smaller than the minimum speed of the particles,
with probability close to one, for times ¢t = O(L). Such assumptions were
first made in ref. 1.

We think of D,, K, ¢y, ¢, 01, U5, Unins Umax> Bmin a0d 7, in (P1)—(P4)
as fixed (global) constants and ¢, in (P5) as an adjustable small parameter.
We will assume throughout the paper that g, is small enough, meaning that

& < EO(Dla Kl, C15 €25 U1, U2 Upins Uaxs Mmins nmax)

It is important to note that the hydrodynamic limit does not require that
&, — 0. The parameter ¢, stays positive and fixed as L — co.
Here is our main result:

Theorem 1.1. There is an L-independent function Y (7) defined for
all 7> 0 and a positive 7, & 2/v,,, (actually, 7, = 2/v,., as & — 0), such
that

sup |Y.(r,w)—Y(7)|—>0 (1.10)

0<7t<7x
and

sup |[Wi(t, w)—W(z)|—>0 (1.11)

0<7t<74

in probability, as L — oo. Here W (1) = Y (7).
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This theorem establishes the convergence in probability of the random
functions Y, (7, ), W(z, w) characterizing the mechanical evolution of the
piston to the deterministic functions Y (7), W (7), in the hydrodynamic limit
L — oo.

The functions Y (7) and W(r) satisfy certain (Euler-type) differential
equations stated in the next section. Those equations have solutions for all
720, but we can only guarantee the convergence (1.10) and (1.11) for
T <7,. What happens for 7> 1,, especially as 7 — oo, remains an open
problem. Some experimental results and heuristic observations in this
direction are presented in ref. 8 and discussed in Section 4.

Remark 1. The function Y(z) is at least C' and, furthermore,
piecewise C? on the interval (0, 7,). Its first derivative W = Y (velocity) and
its second derivative 4 =Y (acceleration) remain ¢ -small: sup, | (7)| <
const - & and sup, |4(7)| < const - &y, see the next section.

Remark 2. We also estimate the speed of convergence in (1.10) and
(1.11): there is a 7; > 0 (7; & 1/v,,,) such that |Y;(z, ®)—Y(z)|]=0(n L/L)
for 0<t<7t, and |Y, (7, w)—Y(7r)|=0(1n L/LY") for 7, <7 <7, The
same bounds are valid for |W,(z, w)—W(r)|. These estimates hold with
“overwhelming” probability, specifically they hold for all we Q} < Q,
such that P(Q}) =1—-0(L™5).

2. HYDRODYNAMICAL EQUATIONS

The equations describing the deterministic function Y(t) involve
another deterministic function—the density of the gas n(y, v, 7). Initially,
n(y,v,0)=my(y, v), and for 7 > 0 the density n(y, v, 7) evolves according
to the following rules.

(H1) Free motion. Inside the container the density satisfies the
standard continuity equation for a noninteracting particle system without
external forces:

0 0
<a—r+va>n(y, v,7)=0 2.1

for all y except y=0, y=1and y =Y (7).
Equation (2.1) has a simple solution

n(y,v,7)=n(y—uvs,v,T—S5) 2.2)
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for 0 < < 7 such that y—uvr ¢ {0, Y(z—r), 1} for all r € (0, s). Equation (2.2)
has one advantage over (2.1): it applies to all points ( y, v), including those
where the function =z is not differentiable.

(H2) Collisions with the walls. At the walls y =0 and y = 1 we have
7(0, v, ) = n(0, —v, 7) (2.3)
n(1,v,7)=n(1, —v, 7) 2.4)

(H3) Collisions with the piston. At the piston y = Y (7) we have

(Y (7)—0,v,7)=n(Y(z)—0, 2W (7)) —v, 1) for v<W(x)
2.5
(Y (7)+0,v,7) =n(Y(z)+0, 2W (1) —v, 1) for v>W(x) 23)

where v represents the velocity after the collision and 2 (t) — v that before
the collision; here

W(r) = dir Y(7) (2.6)

is the (deterministic) velocity of the piston.

It remains to describe the evolution of W(r). Suppose the piston’s
position at time 7 is Y and its velocity W. The piston is affected by the
particles (y, v) hitting it from the right (such that y =Y +0 and v < W) and
from the left (such that y =Y —0 and v > W'). Accordingly, we define the
density of the particles colliding with the piston (“‘density on the piston”)
by

(Y +0,v, 1) if o<W

Y, W) = , 2.7
q(v. T ) {n(Y—O,v,‘c) if v>W @7)

(H4) Piston’s velocity. The velocity W =W (t) of the piston must
satisfy the equation

j Y =W sgn(v—W) q(v, . Y, W) dv=0 2.8)

We also remark that for 7 > 0, when (2.5) holds,

_Jun(¥—=0,0,0)dv_ Jum(Y+0,0,7)dv

WO = Tar—0, 00 dv ~ [a(+0,0,0)dov
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i.e., the piston’s velocity is the average of the nearby particle velocities on
each side.

The system of (hydrodynamical) equations (H1)-(H4) is now closed
and, given appropriate initial conditions, should completely determine the
functions Y (7), W(z) and p(y, v, 7) for > 0. To specify the initial condi-
tions, we set p(y, v, 0) =n(y, v) and Y (0) =0.5. The initial velocity W (0)
does not have to be specified, it comes “for free’” as the solution of the
equation (2.8) at time 7 = 0. It is easy to check that the initial speed |I#(0)|
will be smaller than v,,,, in fact W(0) — 0 as ¢, — 0 in (P5). Note that if the
initial conditions at T =0 do not satisfy (2.3)-(2.5), there will be a discon-
tinuity in p as T — 0 (see also Remark 4 later).

Equation (2.8) has a unique solution ¥ as long as the piston interacts
with some gas particles on both sides, i.e., as long as

inf{v: (Y 4+ 0, v, t) > 0} < sup{v: (Y —0, v, 7) > 0}

Indeed, the left hand side of (2.8) is a continuous and strictly monotoni-
cally decreasing function of W, and it takes both positive and negative
values. The solution W (r) may not be continuous in 7, though. But if
n(y, v, 7) is piecewise C'! and has a finite number of discontinuity lines with
positive slopes (as we require of 7,(y, v) in Section 1), then W (z) will be
continuous and piecewise differentiable.

Remark 3. One can easily check that the total mass /=
{f 7(y,v,7)dvdy and the total kinetic energy 2E = (| v’n(y, v, 7) dvdy
remain constant along any solution of our system of equations (H1)-(H4).
Also, the mass in the left and right part of A4; separately remains con-
stant. Equation (2.8) also preserves the total momentum of the gas
{§ va(y, v, ©) dv dy, but it changes due to collisions with the walls.

Remark 4. Previously, Lebowitz et al. "V studied the piston dynamics
under essentially the same initial conditions as our (P1)-(P5). They argued
heuristically that the piston dynamics could be approximated by certain
deterministic equations in the original (microscopic) variables x and ¢. The
deterministic equations found in ref. 1 correspond to our (2.2)-(2.6) with
obvious transformation back to the variables x, ¢, but our main equation
(2.8) has a different counterpart in the context of ref. 1, which reads

%V(t) —a U“’ W=V (1)) (Y —0, v, £) du—j_V W=V ()2 n(Y +0, v, £) du]

2.9)
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Here X = X(7) and ¥V =V () = X(¢) denote the deterministic position and
velocity of the piston and n(x, v, ¢) the density of the gas (the constant a
appeared in (1.3)). We refer to ref. 1 for more details and a heuristic deri-
vation of (2.9). Since (2.9), unlike our (2.8), is a differential equation, the
initial velocity V'(0) has to be specified separately, and it is customary to set
V' (0) = 0. Alternatively, one can set V' (0) = W(0), see ref. 2. Equation (2.9)
can be reduced to (2.8) in the limit L — oo as follows. One can show (we
omit details) that (2.9) is a dissipative equation whose solution with any
(small enough) initial condition V' (0) converges to the solution of (2.8)
during a ¢-time interval of length ~In L. That interval has length
~L™InL on the 7 axis, and so it vanishes as L — co, this is why we
replace (2.9) with (2.8) and ignore the initial condition (0) when working
with the thermodynamic variables 7 and y. Equation (2.9) is not used in
this paper.

We now describe the solution of our equations (H1)-(H4) in more
detail. Assume that for some 7> 0 the gas density z(y, v, 7) satisfies the
same requirements (P1)-(P4) as those imposed on the initial function
ny(y, v) in Section 1, with constants D, K}, ci, ¢3, U], Uy, Umins Umaxs %u
and 7,,,, whose values are not essential, but are independent of 7.

We also assume an analogue of (P5), but this one is not so straight-
forward, since the piston does not have to stay at the middle point y =0.5

at any time 7 > 0. We require that

min

[¥(z)—0.5| < & (2.10)

and for any point ( y, v) with v, <|v| < v),,, there is another point ( y,, vs)

min X
“across the piston” (i.e., such that (y —Y(7))(y« —Y (7)) < 0) satisfying
ly+y.—1]| <ey, [v+ 04| < & (2.11)
and

(. v, T) =7 Ps, V4, )] < &0 (2.12)

for some sufficiently small ¢, > 0. Actually, the map (y, v) — (s, vy),
which we denote by R,, is one-to-one and will be explicitly constructed
below. The constant &; here, just like g, in (P5), is assumed to be small
enough, and moreover

&y < Ché (2.13)

with some constant Cj > 0.
We now derive elementary but important consequences of the above
assumptions. Since the density n( y, v, 7) vanishes for |v| < v, so does the

min >
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function ¢(v, 7; Y, W) defined by (2.7). Moreover, for all |W|<uv,,,, the
function ¢(v, 7; Y, W) will be independent of W, and so we can write it as
q(v,7;Y). Also, Eq. (2.8) can be simplified: the factor sgn(v—W’) can be
replaced by sgnv. Then, expanding the square in (2.8) reduces it to a

quadratic equation for W:

QW?—20,W+0Q,=0 (2.14)
where
0, = f sgnv-q(v, 7; Y) dv (2.15)
0, = f vsgnv-q(v, 7 ¥) dv (2.16)
0,= j v?sgn v-q(v, 7, Y) dv 2.17)

with Y =Y (7). The integrals Q,, Q,, @, have the following physical
meaning:

mQ, = my —mp
mQ, = p; —Pr
mQ, = 2(e; —eg)

where m;, p;, e; represent the total mass, momentum and energy of the
incoming gas particles (per unit length) on the left hand side of the piston,
and my, pg, eg—those on the right hand side of it. The value Q, also
represents the net pressure exerted on the piston by the gas as if the piston
did not move. Of course, if Q,(tr) =0, then we must have W (z) = 0, which
agrees with (2.14).

Next, under the above requirements on 7(y,v,t), the function
q(v, 7; Y) is, in a certain sense, nearly symmetric in v about v = 0 (see ref. 2
for details). This fact implies that Q, and Q, are small, more precisely

max{|Q,|, |0} < C'% (2.18)

where C’ > 0 is a constant depending on the parameters D], K}, etc., but
not on &,. At the same time, the assumption (P3) guarantees that

01201 min>0 (2.19)

where O, ., is a constant depending on 7

’
min >

v}, vy, etc., but not on &,.
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If ¢, is small enough, there is a unique root of the quadratic polyno-
mial (2.14) on the interval (—v},,, Vi), Which corresponds to the only

solution of (2.8). Since this root is smaller, in absolute value, than the other
root of (2.14), it can be expressed by

— —\/Z% ~0,0; 220

where the sign before the radical is “—,” not “+.” Of course, (2.20)
applies whenever Q, # 0, while for Q, = 0 we simply have W (z) = Q,/20;.
Equations (2.18)—(2.20) imply an upper bound on the piston velocity:
[W(7)| < B'g, for some constant B’ > 0 depending on D7, K}, etc., but not
on ¢,. A similar bound holds for the piston acceleration A(t) = W(z), since

_ (dQy/dr) W?—2(dQ, /dr) W +(dQ,/dr)
B 201 = QW)

and |dQ, /dz| = |(dQ,/dY) W| < const - g, see ref. 2 for more details.

Next we consider the evolution of a point (y,v) in the domain
G :={(y,v):0< y <1} under the rules (HI)-(H3), i.e., as it moves freely
with constant velocity and collides elastically with the walls and the piston.
Denote by (y,,v,) its position and velocity at time 7>0. Then (HI)
translates into y, = v, and v, = 0 whenever y, ¢ {0, 1, Y(z)}, (H2) becomes
(Veros Ver0) = (Voo —v,_o) whenever y, € {0, 1}, and (H3) gives

(Yer0s Vero) = (Vom0 2W(7) =) (221

whenever y,_, =Y (7). Note that (2.21) corresponds to a special case of
the mechanical collision rules (1.1)-(1.2) with ¢ =0 (equivalently, m = 0).
Hence the point (y, v) moves in G as if it was a gas particle with zero mass.

The motion of points in (y, v) is described by a one-parameter family
of transformations F*: G — G defined by F*(y,, vy) = (y,, v,) for 7> 0. We
will also write F~(y,, v,) = (), vy). According to (H1)-(H3), the density
n(y, v, 7) satisfies a simple equation

T Yes ey T) = T(F (Y2, 0,), 0) = 7o (0, o) (2.22)

for all > 0. Also, it is easy to see that for each 7 > 0 the map F°* is one-to-
one and preserves area, i.e., det |[DF*(y, v)| = 1.

Now, because of (P4), the initial density 7,(y, v) can only be positive
in the region

A(7)

G :={(»,0):0<y <1, Uy < [0] < Oy )
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hence we will restrict ourselves to points (y,v) € G* only. At any time
7>0, the images of those points will be confined to the region
G*(t) := F*(G"). In particular, n( y, v, 7) = 0 for (y, v) ¢ G*(1).

The map R,: (y, v) — (4, vs) involved in (2.11) and (2.12) can now
be defined as R, = F* o R, o F~*, where Ry(y,v)=(1—y, —v) is a simple
reflection ““across the piston” at time 7 = 0.

We now make an important observation. If a fast point ( y,, v,) collides
with a slow piston, |W(7)| < |v,|, they cannot recollide too soon: the point
must travel to a wall, bounce off it, and then travel back to the piston
before it hits it again.

Therefore, as long as (P1)-(P4) hold, the collisions of each moving
point (y.,v,) € G¥(r) with the piston occur at well separated time
moments, which allows us to effectively count them. For (x,v) e G*

N(y,v,7)=#{s€(0,7): y, =Y (s), v, #W(s)}

is the number of collisions of the point (y, v) with the piston during the
interval (0,7). For each 7>0, we partition the region G¥(r) into
subregions

Gi():={F(y,v):(y,0)eG* & N(y,v,7) =n}

so G () is occupied by the points that at time 7 have experienced exactly n
collisions with the piston during the interval (0, 7).

Now, for each n > 1 we define 7, > 0 to be the first time when a point
(., v.) € G*(7) experiences its (n+ 1)-st collision with the piston, i.e.,

7, =sup{t>0:G,, (v) =}

In particular, 7, > 0 is the earliest time when a point (y,, v,) € G*(1) expe-
riences its first recollision with the piston. Hence, no recollisions occur on
the interval [0, 7,), and we call it the zero-recollision interval. Similarly, on
the interval (7,, 7,) no more than one recollision with the piston is possible
for any point, and we call it the one-recollision interval.

The time moment 7, mentioned in Theorem 1.1 is the earliest time
when a point (y,, v,) € G*(7) either experiences its third collision with the
piston or has its second collision with the piston given that the first one
occurred after t,. Hence, 7, <7,, and actually 7, is very close to 7,, see
below.

The following theorem summarizes the properties of the solutions of
the hydrodynamical equations (H1)-(H4).
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Theorem 2.1 (ref. 2). Let T>0 be given. If the initial density
7o ( y, v) satisfies (P1)—(P5) with a sufficiently small g;, then

(a) the solution of our hydrodynamical equations (H1)-(H4) exists
and is unique on the interval (0, T');

(b) the density n(y, v, ) satisfies conditions similar to (P1)-(P4) for
all 0 <t < T, it also satisfies (2.10)—(2.13);

(c) the piston velocity and acceleration remain small, [#(7)| = O(g,)
and |4(7)| = O(e);

(d) we have |t,—k/vn,|=0(g) for all 1<k<Tv,,, and if
TV > 2, then also |7, —7,| = O(g,).

Corollary 2.2. If ¢ =0, so that the initial density 7,(y, v) is com-
pletely symmetric about the piston, the solution is trivial: Y (z) =0.5 and
W(z) =0 for all t > 0.

Lastly, we demonstrate the reason for our assumption that all the dis-
continuity curves of the initial density 7,( y, v) must have positive slopes. It
would be quite tempting to let 7n,(y, v) have more general discontinuity
lines, e.g., allow it be smooth for v, <|v| < v, and abruptly drop to 0
at v=uv,, and v=y The following example shows why this is not
acceptable.

max *

Example. Suppose the initial density 7,(y, v) has a horizontal dis-
continuity line v = v, (say, vy = Uy, OT Uy = U, ). After one interaction with
the piston the image of this discontinuity line can oscillate up and down,
due to the fluctuations of the piston acceleration (Fig. 1). As time goes on,
this oscillating curve will “travel” to the wall and come back to the piston,
experiencing some distortions on its way, caused by the differences in

e e e e —————— e —— - 1

Fig. 1. A horizontal discontinuity line (bottom) comes off the piston as an oscillating curve
(top).
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velocities of its points (Fig. 1). When this curve comes back to the piston
again, it may well have “turning points” where its tangent line is vertical,
or even contain vertical segments of positive length. This produces
unwanted singularities or even discontinuities of the piston velocity and
acceleration. The same phenomena can also occur when a discontinuity line
of the initial density 7,( y, v) has a negative slope.

3. SKETCH OF THE ARGUMENT

Our proof of Theorem 1.1 is based on large deviation estimates for the
Poisson random variable:

Lemma 3.1 (ref. 2). Let X be a Poisson random variable with
parameter A>0. For any 5>0 there is a ¢>0 such that for all

0<B<b./Awehave
P(X -2 >B. /1) <2

This shows that the probabilities of large deviations rapidly decay, as
they do for the Gaussian distribution.

The principal step in our proof of Theorem 1.1 is the velocity decom-
position scheme described next. Let V. (¢, w) be the velocity of the piston at
time ¢ > 0 for a random configuration of particles w € ;. Let 4t >0 be a
small time increment. Then the law of elastic collision (1.1) implies

V,(t+4t, 0) = (1—e)* V, (4, w)+azk: (1—g)*.p, 3.1)

j=

Here k =k(¢, At, w) is the number of particles colliding with the piston
during the time interval (z, t+4t), and v; are their velocities numbered in
the order in which the particles collide.

We rearrange the formula (3.1) as follows:

k

Vo(t+4t, 0) = (1—ek) Vo (t, o) +& Y v+ 1O+ 1? (3.2)

j=1

where

1O =V, (t, 0)[(1—e)*—1+ek]
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and
k
¥ =2 Y vl1-e)*=1]
j=1

Let us assume that the fluctuations of the velocity V; (s, @) on the interval
(¢, t+ A4t), are bounded by some quantity oV:

sup  [Vi(s, )=V, (t, w)| <V (3.3)

se(t, t+4r)

Consider two regions on the x, v plane:

_ _v=V(t, @) —(sgnv) 6V 1
Dl —{(X, U)' X—XL(t, CO) < Ats Vmin <|U|<Umax (34)
and
_ v=V(t, @)+ (sgnv) 6V 1
D, = {(x, v): X, (. 0) < T Vpin < V] < Upax 3.5

Each of them is a union of two trapezoids D, = D} U D;, i =1, 2, where
D; denotes the upper and D} the lower trapezoid, see Fig. 2.

Note that D, = D,. The bound (3.3) implies that all the particles in
the region D, necessarily collide with the piston during the time interval
(¢, t+ 4t). Moreover, the trajectory of every point (x, v) € D, hits the piston

T Vmax

Ly \

[ Ymin

X(1)

\
\

Fig. 2. Region D, is bounded by solid lines. Region D, is bounded by a dashed line.
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within time 4¢. The bound (3.3) also implies that all the particles actually
colliding with the piston during the interval (¢, ¢ + At) are contained in D,.

Let us denote by k* the number of particles in the regions DF for
r=1,2 at time . We also denote by £~ the number of particles actually
colliding with the piston “on the left,” and by k* that number “on the
right” (of course, k~+k*=k). Due to the above observations, ki <
k*<ki.

Now, suppose that ¢+ A4t <7,L. Then we show that for typical con-
figurations  the particles in each domain D,, r = 1, 2, have never collided
with the piston before. Therefore, their number, k*, r = 1, 2, satisfies the
laws of Poisson distribution, in particular, the large deviation estimate in
Lemma 3.1 applies. This gives the bound (for typical w)

AE —AkE <k*<Af+AkE (3.6)

where

Af = E(k) =L j . (x, v) dx dv
PRCE!

and F;' corresponds to the action of F~"= F~"/* in the original time-space

coordinates x,¢. The deviations 4k* in (3.6) can be adjusted by using

Lemma 3.1. The difference A — A is estimated by

R o

F.' (DF \Df

p(x, v) dx dv < const- L* 6V At
)

By putting all these estimates together we get tight bounds on k in (3.2).
Similarly we get bounds on Y°5_, v; in (3.2). The following is the final result
of this analysis:

Vi(t+4t, o)V, (¢, 0) = D(¢t, ) At + x5 3.7
Here
D(t, w) =a[ Q)V (1, ®) =20,V (1, w) + O, ] (3.8)

and Q,, Q,, O, are defined similarly to (2.15)-(2.17), in which Y (7) must be
replaced by the actual piston position X, (z, w)/L. The error term y, in
(3.7) is bounded by

lnLIj/E (3.9)

lxs| < const-

which corresponds to Brownian motion-type random fluctuations.
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The term 2(¢, ) in (3.7) represents the main (“deterministic’’) force
acting on the piston. The term y; describes random fluctuations of that
force. When the piston velocity stabilizes, then the main force 2 should
vanish, and an “equilibrium” velocity V. (¢, w) will be established. The
latter is the root of the equation 2(t, w) = 0, which is

7, w)le—\/ g—Qon (3.10)

The reason why V, (¢, w) converges to V; is that & is almost proportional
to V,—V;,ie., 0<E <2/(V,—V,) < E, <o for some constants E,, E,.
In fact, V, (¢, ) is a very slowly changing function of ¢, whose derivative is
small: |dV, (¢, w)/dt| <const-L7'¢,. As a result, ¥, will always stay close
to V., more precisely

[V.(t, ®) =V, (t, w)| < const- L~ In L (3.11)

on the entire zero-recollision interval 0 <t <7, L.
Now, the piston coordinate Y; (z, ®) = X, (tL, w)/L is the solution of
the differential equation

YLZVLZVL+X4

where |y,| < const- L~ In L by (3.11). On the other hand, the deterministic
piston coordinate ¥ (7) is the solution of the equation ¥ =W, and both ¥
and W are given by the same radical expression, cf. (2.20) and (3.10).
Lastly, a simple application of Gronwall’s inequality completes the proof
of Theorem 1.1 on the zero-recollision interval (0, ;).

The proof on the one-recollision interval (z,, 74) goes along the same
lines. One major difference is that the number of particles k*, r=1, 2, in
the domain D? constructed in the velocity decomposition scheme is no
longer a Poisson variable, so Lemma 3.1 does not apply directly.

To handle this new situation, we pull the domain D* back in time,
as we did before. But now that pullback involves one interaction with the
piston (corresponding to the first collision of the particles in DF with the
piston, which occurs during the zero-recollision interval 0 < ¢ < 7, L).

Since the piston position and velocity at the moment of that first
collision are random, the preimage of D* will be a random domain. Its
shape will depend on the piston velocity V' (¢, w) during the zero-recollision
interval 0 < ¢ < t,L. We observe that the boundary of the preimage of D}
is described by a random, yet Holder continuous function, and its Holder
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exponent is 0.5 due to (3.9). Then we pick a small d >0 and construct a
d-dense set in the space of all Holder continuous functions in the spirit of a
work by Kolmogorov and Tihomirov.®) The elements of that d-dense set
can be used to construct a finite collection of (nonrandom) domains, so
that one of them will approximate the (random) preimage of our DI (we
need to select the small d > 0 carefully to ensure sufficient accuracy of the
approximation). Now the number of particles in our random domain (the
preimage of D?) can be approximated by the number of particles in the
corresponding nonrandom domain. The latter has Poisson distribution,
and finally we can apply Lemma 3.1. This trick gives necessary estimates
onk?.

A full proof of Theorem 1.1 is given in ref. 2. At present, we do not
know if this theorem can be extended beyond the critical time 7., this is an
open question. Some other open problems are discussed in the next section.

4. DISCUSSION AND OPEN PROBLEMS

1. The main goal of this work is to prove that under suitable initial
conditions random fluctuations in the motion of a massive piston are small
and vanish in the thermodynamic limit. We are, however, able to control
those fluctuations effectively only as long as the surrounding gas particles
can be described by a Poisson process, i.e., during the zero-recollision
interval 0 <7 <7,. In that case the random fluctuations are bounded by
const-L7'In L, see Remark 2 after Theorem 1.1. Up to the logarithmic
factor, this bound is optimal, see ref. 8 and earlier estimates by Holley, !?
Diirr et al.)

During the one-recollision interval 7, <t < 7,, the situation is differ-
ent. The probability distribution of gas particles that have experienced one
collision with the piston is no longer a Poisson process, it has intricate cor-
relations. We are only able to show that random fluctuations remain
bounded by L~'/7, see again Remark 2. Perhaps, our bound is far from
optimal, but our numerical experiments reported in ref. 8 show that
random fluctuations indeed grow during the one-recollision interval.

We have tested numerically whether random fluctuations remained
small after more than one recollision, i.e., at times 7 > 7,. We found that
for some initial 7, they actually increased very rapidly, and we conjectured
that the rate of increase was exponential in 7. We found, indeed, that at
times 7 ~ log L the fluctuations became large even on a macroscopic scale,
and then many unexpected phenomena occurred.®

Interestingly, the exponential growth of random fluctuations seems to
be related to the instability of our hydrodynamical equations. We found
that small perturbations of the initial density 7, can grow exponentially in
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7 under certain conditions, matching the growth of random fluctuations of
the piston motion in the mechanical model. We refer the reader to ref. 8 for
further discussion and to our work in progress.!?

2. It is clear that in our model recollisions of gas particles with the
piston have a very ‘“destructive” effect on the dynamics in the system.
However, we need to distinguish between two types of recollisions.

We say that a recollision of a gas particle with the piston is long if the
particle hits a wall x =0 or x = L between the two consecutive collisions
with the piston. Otherwise a recollision is said to be short. Long recollisions
require some time, as the particle has to travel all the way to a wall, bounce
off it, and then travel back to the piston before it hits it again. Short
recollisions can occur in rapid succession.

We have imposed the velocity cut-off (P4) in order to avoid any
recollisions for at least some initial period of time (which we call the zero-
recollision interval). More precisely, the upper bound v,,, guarantees the
absence of long recollisions. Without it, we would have to deal with arbi-
trarily fast particles that dash between the piston and the wall very many
times in any interval (0, 7). On the other hand, the lower bound v, was
assumed to exclude short recollisions.

There are good reasons to believe, though, that short recollisions may
not be so destructive for the piston dynamics. Indeed, let a particle experi-
ence two or more collisions with the piston in rapid succession (i.e.,
without hitting a wall in between). This can occur in two cases: (i) the par-
ticle’s velocity is very close to that of the piston, or (ii) the piston’s velocity
changes very rapidly. The latter should be very unlikely, since the determi-
nistic acceleration of the piston is very small, cf. Theorem 2.1(c). In case (i),
the recollisions should have very little effect on the velocity of the piston
according to the rule (1.1), so that they may be safely ignored, as it was
done already in earlier studies.* 'V

We therefore expect that our results can be extended to velocity dis-
tributions without a cut-off from zero, i.e., allowing v,,;, = 0.

3. In our paper, L plays a dual role: it parameterizes the mass of the
piston (M ~ L?), and it represents the length of the container (0 < x < L).
This duality comes from our assumption that the container is a cube.

However, our model is essentially one-dimensional, and the mass of
the piston M and the length of the interval 0 < x < L can be treated as two
independent parameters. In particular, we can assume that the container is
infinitely long in the x direction (so, that L is infinite), but the mass of the
piston is still finite and given by M ~ L?. In this case there are no recolli-
sions with the piston, as long as its velocity remains small. Hence, our zero-
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recollision interval is effectively infinite. As a result, Theorem 1.1 can be
extended to arbitrarily large times. Precisely, for any 7> 0 we can prove
the convergence in probability:

P(sup Y. (7,0)—Y(7)|<CrInL/L)—1

0<t<T
and

P(sup [Wi(z,0)—W()|<CrInL/L)—1

0<7<T

as L — oo, where C; >0 is a constant and Y (7) and W (z) = Y (7) are the
solutions of the hydrodynamical equations described in Section 2.

4. Along the same lines as above, we can assume that the container is
d-dimensional with d > 3. Then the mass of the piston and the density of
the particles are proportional to L¢~! rather than L.

When d is large, the gas particles are very dense on the x, v plane. This
leads to a much better control over fluctuations of the particle distribution
and the piston trajectory. As a result, Theorem 1.1 can be extended to the
k-recollision interval (7, 7,,;), where k > 1 depends on d. It can be shown
that for any k > 1 there is a d;, = 3 such that for all d > d, the convergence
(1.10) and (1.11) holds with 7, = 7,. Therefore, a higher dimensional piston
is more stable than a lower dimensional one.

It would be interesting to investigate other modifications of our model
that lead to more stable regimes. For example, let the initial density
my(y,v) of the gas depend on the factor a=¢L? in such a way that
no(y,v) =a 'p(y, v), where p(y,v) is a fixed function. Then the particle
density grows as a — 0. This is another way to increase the density of the
particles, but without changing the dimension. One may expect a better
control over random fluctuations in this case, too.
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